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.LC0:
.string "QUANTUM!"
.text
.globl main
.type main, @function

main:
.LFB0:

.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
subq $16, %rsp
movl $0, -4(%rbp)
jmp .L2

.L3:
movl $.LC0, %edi
movl $0, %eax
call printf
addl $1, -4(%rbp)

.L2:
cmpl $4, -4(%rbp)
jle .L3
leave
.cfi_def_cfa 7, 8
ret
.cfi_endproc

vs.
5.times do

print "QUANTUM!"
end

Figure 1.6 Contrasting a low-level and a high-level language for computer
programs. The programs on the left and right perform the same task, but
one is written in the low-level x86 assembly language, and one in the high-
level language Ruby.
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Figure 1.7 Contrasting a low-level and a high-level language for quantum
processes, just like we contrasted the low-level and a high-level representa-
tion for digital data in Fig. 1.5, and a low-level and a high-level program-
ming language in Fig. 1.6.

as well, for example, modelling meaning in natural language (Fig. 1.8), doing
proofs in formal logic, control theory, and modelling electrical circuits.

Diagrams are also becoming increasingly important in some fancy research
areas of pure mathematics, such as knot theory, representation theory and
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https://www.azimuthproject.org/azimuth/show/Network+theory
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different sorts of networks compositionally, inspired by the 
algebraic methods of programming language semantics.

Diagrams are first-class citizens of the theory. The appropriate 
algebraic setting is monoidal (and not cartesian) categories. 
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Signal Flow Graphs
Signal Flow Graphs are stream processing 
circuits widely adopted in Control Theory 

and Signal Processing

Claude Shannon. The theory and design of 
linear differential equation machines (1942). 
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Sound and Complete Axiomatisation 
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Figure 4: An alternative presentation for the SMIT of abelian Groups

Involution. Involution on FCM+can be easily extended to FAG+ by defining

( )� ::= .

Now, the fact that white monoid and white comonoid form a special Frobenius algebra
gives us the following important proposition.

Proposition 8.2. R  S i↵ R� � S�.

Proof. It is enough to check that, for each of the inequation R  S in the axiomati-
zation in Fig. 3, R�  S� holds.

The above proposition can be used as an e↵ective proof technique. For instance,
to prove that

= (75)

it is enough to recall equation (60) and apply Proposition 8.2.

Since the antipode is a morphism of white monoid (see (70) and (72)), it is an
additive arrow. By induction and Lemma 7.2, one can easily prove that all the
morphisms in FAG+ are additive. As a consequence, all the results about >, ?, ?,
>, and (�)� proved for commutative monoids, still hold for abelian groups. Observe
that these operators do not form a Boolean algebra as > and ? distribute over each
other only laxly. Other axioms of Boolean algebras that fail are R ? R� = ? and
R > R� = >: to see this, it is enough to take R = id.
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