FOUNDATIONS OF NETWORK DIAGRAMS: Dynamical Systems, Bayesian Networks and Quantum Processes

FILIPPO BONCHI UNIVERSITY OF PISA

1932: von Neumann's original formulation of quantum theory based on Hilbert spaces

1932: von Neumann's original formulation of quantum theory based on Hilbert spaces

Scientist and Two Colleagues Find It Is Not 'Complete' Even Though 'Correct.'

SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

New York Times headline of May 4, 1935.

1932: von Neumann's original formulation of quantum theory based on Hilbert spaces

1935: EPR *weirdness* of non-locality: "spooky action at distance"

Scientist and Two Colleagues Find It Is Not 'Complete' Even Though 'Correct.'

SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

New York Times headline of May 4, 1935.

1932: von Neumann's original formulation of quantum theory based on Hilbert spaces

1935: EPR *weirdness* of non-locality: "spooky action at distance"

1993: Bennet et al. conceived the *feature* of quantum teleportation.

Scientist and Two Colleagues Find It Is Not 'Complete' Even Though 'Correct.'

SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

New York Times headline of May 4, 1935.

1932: von Neumann's original formulation of quantum theory based on Hilbert spaces

1935: EPR *weirdness* of non-locality: "spooky action at distance"

1993: Bennet et al. conceived the *feature* of quantum teleportation.

Scientist and Two Colleagues Find It Is Not 'Complete' Even Though 'Correct.'

SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

New York Times headline of May 4, 1935.

Why did it take so long?

PICTURING QUANTUM PROCESSES

A First Course in Quantum Theory and Diagrammatic Reasoning

BOB COECKE AND ALEKS KISSINGER

Reasoning about quantum systems via Hilbert spaces is rather incovenient, pretty much like programming a distributed application in Assembly

A First Course in Quantum Theory and Diagrammatic Reasoning

BOB COECKE AND ALEKS KISSINGER

Reasoning about quantum systems via Hilbert spaces is rather incovenient, pretty much like programming a distributed application in Assembly

$\frac{1}{4}$	$1+i \\ 1+i \\ 1-i \\ 1+i \\ 1-i \\ -1+i \\ -1+i$	1-i 1-i -1-i 1-i 1-i 1+i	$1-i \\ 1-i \\ -1-i \\ 1-i \\ -1-i \\ 1+i \\ 1+i$	$1+i \\ 1+i \\ 1-i \\ 1+i \\ 1-i \\ -1+i \end{cases}$	$-1+i \\ 1-i \\ 1+i \\ 1-i \\ 1+i \\ 1+i \\ 1+i \end{pmatrix}$	$\begin{array}{c} 1+i\\ -1-i\\ 1-i\\ -1-i\\ 1-i\\ 1-i\\ 1-i\end{array}$	$\begin{array}{c} 1+i\\ -1-i\\ 1-i\\ -1-i\\ 1-i\\ 1-i\\ 1-i\end{array}$	$\begin{array}{c}1\!-\!i\\1\!+\!i\\1\!-\!i\\1\!+\!i\end{array}$	vs.	<u> </u>	-
---------------	---	---	---	---	--	---	---	---	-----	----------	---

A First Course in Quantum Theory and Diagrammatic Reasoning

BOB COECKE AND ALEKS KISSINGER

Reasoning about quantum systems via Hilbert spaces is rather incovenient, pretty much like programming a distributed application in Assembly

$\frac{1}{4}$	$1+i \\ 1+i \\ 1-i \\ 1+i \\ 1-i \\ -1+i \\ -1+i$	1-i 1-i -1-i 1-i 1-i 1+i	$1-i \\ 1-i \\ -1-i \\ 1-i \\ -1-i \\ 1+i \\ 1+i$	1+i 1+i 1-i 1+i 1-i -1+i	-1+i 1-i 1+i 1-i 1+i 1+i 1+i	$\begin{array}{c} 1+i\\ -1-i\\ 1-i\\ -1-i\\ 1-i\\ 1-i\\ 1-i\end{array}$	$\begin{array}{c} 1+i\\ -1-i\\ 1-i\\ -1-i\\ 1-i\\ 1-i\\ 1-i\end{array}$	$1-i \\ 1+i \\ 1-i \\ 1+i \\ 1+i \\ 1+i$	vs.
	1+i	1 - i	1 - i	1+i	-1+i	1+i	1+i	-1+i /	

A First Course in Quantum Theory and Diagrammatic Reasoning

BOB COECKE AND ALEKS KISSINGER

Developing an high level language for quantum system would boost the discovery of quantum features and the development of quantum technologies

 $1+i \\ -1+i \\ 1-i \\ 1+i$

 $1-i \\ 1+i \\ 1+i \\ -1+i$

Reasoning about quantum systems via Hilbert spaces is rather incovenient, pretty much like programming a distributed application in Assembly

	$\int -1+i$	1+i	1+i	-1+i	1+i	$1\!-\!i$	1-i	
	1+i	1-i	1-i	1+i	-1+i	1+i	1+i	-
	1+i	1-i	1-i	1+i	1-i	-1-i	$-\!1\!-\!i$	
1	1 - i	-1-i	-1-i	1-i	1+i	1-i	1-i	
$\overline{4}$	1+i	1-i	1-i	1+i	1-i	-1-i	-1-i	
	1 - i	-1-i	-1-i	1-i	1+i	1-i	1-i	
	-1+i	1+i	1+i	-1+i	1+i	1-i	1-i	
	1+i	1-i	1 - i	1+i	-1+i	1+i	1+i	-

A First Course in Quantum Theory and Diagrammatic Reasoning

BOB COECKE AND ALEKS KISSINGER

Developing an high level language for quantum system would boost the discovery of quantum features and the development of quantum technologies

Diagrammatic languages are not really made of syntax.

Signal Flow Graphs

Diagrammatic languages are not really made of syntax.

Signal Flow Graphs

We are able to describe the behaviour of the whole systems

Diagrammatic languages are not really made of syntax.

Signal Flow Graphs

We are able to describe the behaviour of the whole systems

But not the behaviour of the single components

Diagrammatic languages are not really made of syntax.

Signal Flow Graphs

We are able to describe the behaviour of the whole systems

But not the behaviour of the single components

Diagrammatic languages are not really made of syntax.

Signal Flow Graphs

We are able to describe the behaviour of the whole systems

But not the behaviour of the single components

The behaviour of the whole system should be "reducible" to the behaviour of its components

Diagrammatic languages are not really made of syntax.

Signal Flow Graphs

We are able to describe the behaviour of the whole systems

But not the behaviour of the single components

The behaviour of the whole system should be "reducible" to the behaviour of its components https://www.azimuthproject.org/azimuth/show/Network+theory

Compositional Modelling

There is an emerging, multi-disciplinary field aiming at studying different sorts of networks **compositionally**, inspired by the **algebraic methods** of programming language semantics.

A Compositional Framework for Passive Linear John C. Baez Department	Winderstein Condition / Event Nets using Bayesian Networks Winderstein California University of Duisburg-Essen benjamin.cabrera@uni-due.d Patientel University of Hawaii heindel@hawaii.edu Patientel University of Leicester in122@leicester.ac.uk Patientel Barbara König Die Coeckte AND Alterst Missinger
Filippo Bonchi University of Pisa	University of Duisburg-Descriter
Jens Seeber IMT School for Advanced Studies Lucca Paweł Sobociński	Diagrammatic Semantics for Digital Circuits*
University of Southampton University of Southampton University of Southampton University of Southampton	Dan R. Ghica ¹ , Achim Jung ² , and Aliaume Lopez ³ University of Birmingham, United Kingdom University of Birmingham, United Kingdom

Diagrams are first-class citizens of the theory. The appropriate algebraic setting is **monoidal** (and not **cartesian**) categories.

Compositional Modelling

There is an emerging, multi-disciplinary field aiming at studying different sorts of networks **compositionally**, inspired by the **algebraic methods** of programming language semantics.

A Compositional Framework for Passive Linear John C. Baez Department	Tobias Heindel University of Hawaii heindel@hawaii.edu Reiko Heckel University of Leicester rh122@leicester.ac.uk De herre König
Filippo Bonchi University of Pisa Jens Seeber IMT School for Advanced Studies Lucca Paweł Sobociński University of Southampton	Barbara Kons University of Duisburg-Essen University of Diagrammatic Semantics for Digital Circuits* Dan R. Ghica ¹ , Achim Jung ² , and Aliaume Lopez ³ 1 University of Birmingham, United Kingdom 2 University of Birmingham, United Kingdom

Diagrams are first-class citizens of the theory. The appropriate algebraic setting is **monoidal** (and not **cartesian**) categories.

Signal Flow Graphs Signal Flow Graphs are **stream** processing circuits widely adopted in Control Theory and Signal Processing

Claude Shannon. The theory and design of linear differential equation machines (1942).

Signal Flow Graphs Signal Flow Graphs are **stream** processing circuits widely adopted in Control Theory and Signal Processing

Claude Shannon. The theory and design of linear differential equation machines (1942).

=

=

_

_

=

 $\bullet \bullet \leq \Box \leq \circ - \circ \circ \qquad - \circ \circ - \leq - \bullet \bullet \bullet$

=

= _

-These axioms are almost the same as those for Quantum mechanics

=

https://graphicallinearalgebra.net

 These axioms are almost the same as those for Quantum mechanics

=

https://graphicallinearalgebra.net

References

- Bonchi, Sobocinski, Zanasi *Full Abstraction for Signal Flow Graphs*, POPL, 2015. [see also Fabio Zanasi ph.D thesis - *Interacting Hopf Algebras* (ENS-Lyon, 2015)]
- Bonchi, Gadducci, Kissinger, Sobocinski, Zanasi Rewriting modulo symmetric monoidal structure - LICS 2016.
- Bonchi, Sobociński, Zanasi Interacting Hopf algebras. Journal of Pure and Applied Algebra (2017).
- Bonchi, Holland, Piedeleu, Sobocinski, Zanasi Diagrammatic Algebra: From Linear to Concurrent Systems, POPL, 2019. [see also Robin Piedeleu Ph.D thesis - Picturing resources in concurrency (Oxford, 2019)]
- Bonchi, Piedeleu, Sobocinski, Zanasi Graphical Affine Algebra, LICS 2019.