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Right of Explanation

General
Data
Protection
Regulation

Since 25 May 2018, GDPR establishes a right for all individuals to obtain “meaningful explanations of the logic
involved” when “automated (algorithmic) individual decision-making”, including profiling, takes place.



Open the Black Box Prob\ems
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What is a Black Box Model?

A black box is a model,
whose internals are either
unknown to the observer or
they are known but
uninterpretable by humans.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box
models. ACM Computing Surveys (CSUR), 51(5), 93.
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Recognized Interpretable Models

1st, 2@, survived PREDICTION: p(survived = yes | X) = 0.671
female Pclass? ‘ OUTCOME: YES
3rd class not survived Feature contribution
sex”?
y survived Ras 0.344
male age’? Age 20,034
}‘ not survived Sex | 1194
Decision Tree Linear Model

if condition1 A conditiona A conditions then outcome

Rules

Value

3rd
52

female



Problems Taxonomy

OPEN THE BLACK
BOX PROBLEMS
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XbD — eXplanation by Design @

Black-box System
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BBX - Black Box eXplanation

Black-box
Al System

Eji'ﬂ

Explanation

Input Data

- ) BLACK BOX
EXPLANATION
Explanation Sub-system
MODEL OUTCOME MODEL
EXPLANATION EXPLANATION INSPECTION




How Can We Explain?

* We adopt reverse engineering: we can only observe the
input and output of the black box.

* Possible actions are:

» querying/auditing the black box with input records
created in a controlled way using random perturbations

] i i Input Output
* choice of a particular interpretable model by utpu
* The explanation process can be generalizable or not:

* Model-Agnostic
* Model-Specific







Research Proposals

* Local Explanation * Defining Explanations
e for different type of data  What is an explanation? For whom is
« for pairwise learning an explanation?
* with causal reasoning * Design of languages for explanation

context-dependent

* Design explanation as human-
machine conversation

e with inductive logic programming

* Transparent Design
e Data-driven merge of decision trees

* Prototype-based decision trees for
interpretability also in latent space

* Evolving decision trees in real or latent
space with a genetic algorithm

* Explanation Evaluation & design of a
benchmarking platform
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