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The Algorithm Configuration Problem [Rice, 1976]

Running a target algorithm depends on:

features of the input (“problem space”);

controls by the user, i.e. the algorithmic parameters
(“algorithm space”).

Algorithm Configuration problem (ACP): given a problem input
f and a target algorithm A, find the controls c optimizing the
performance pA of the target algorithm.
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Default algorithm configuration

Figure: No tuning: let the algorithm roam free
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Default algorithm configuration

Figure: No tuning: let the algorithm roam free

WARNING: Default configurations often suboptimal!
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Manual algorithm configuration

Figure: Manual tuning: steer the algorithm
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Manual algorithm configuration

Figure: Manual tuning: steer the algorithm

WARNING: Manual tuning is time-consuming + trial & error
process
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Automatic algorithm configuration [Hutter et al., 2009]

Figure: Automatic tuning: take educated guesses
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Our approach to the ACP: “learn then optimize”

1. Performance Map Learning Phase (PMLP)

Supervised Machine Learning (ML) predictor
[Shalev-Shwartz and Ben-David, 2014] learns coefficients θ∗ for
prediction model p̄A(f , c, θ) of pA(f , c).

2. Configuration Space Search Problem (CSSP)

Optimization problem encoding properties of PMLP in closed form
(by mathematical programming). For given f and θ CSSP(f , θ)
finds algorithmic configuration with minimum estimated
performance:

CSSP(f , θ) ≡ min
c∈CA

p̄A(f , c , θ).
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The challenges

You may be enticed by:

in CSSP: ML ¬black-box =⇒ CSSP solved with known
optimization techniques

learning-based optimization: learn components of an
optimization problem then find clever way to optimize over
huge combinatorial sets

learning under hard constraints: have learning
methodology enforce dependency and compatibility
constraints on the controls
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Possible research applications...

. . . encompass but are not limited to:

medicine and bio-informatics: find best treatment for a
specific patient

optimization solvers: find best solver parameters for specific
problem instance

machine learning: hyperparameter tuning

. . .
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Possible future work

Algorithmic ideas to develop:

test SVR kernels and other learning methodologies (trees,
ad-hoc neural networks, . . . ) for PMLP

explore ways to embed downstream optimization problem
into the learning phase

find approximations of the CSSP for faster solutions

. . .
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(2009).
ParamILS: An automatic algorithm configuration framework.
J. Artif. Int. Res., 36(1):267–306.

Rice, J. R. (1976).
The algorithm selection problem.
Advances in Computers, 15:65–118.

Shalev-Shwartz, S. and Ben-David, S. (2014).
Understanding Machine Learning: From Theory to Algorithms.

Cambridge University Press.

Pisa 2019 Algorithmic configuration by learning + opt. 9/9


