# Algorithmic configuration by learning and optimization

#### Claudia D'Ambrosio<sup>1</sup>, Antonio Frangioni<sup>2</sup>, **Gabriele Iommazzo**<sup>1,2</sup>, Leo Liberti<sup>1</sup>

<sup>1</sup>DASCIM Team, CNRS LIX, Ecole Polytechnique, Palaiseau, France

<sup>2</sup>Operations Research Group, Dip. di Informatica, Università di Pisa, Italy

Dec 5, 2019. Pisa THESES





Running a target algorithm depends on:

- features of the input ( "problem space");
- **controls** by the user, i.e. the algorithmic parameters (*"algorithm space"*).

Algorithm Configuration problem (ACP): given a problem input f and a target algorithm  $\mathcal{A}$ , find the controls c optimizing the performance  $p_{\mathcal{A}}$  of the target algorithm.



Figure: No tuning: let the algorithm roam free



## Default algorithm configuration



Figure: No tuning: let the algorithm roam free

#### WARNING: Default configurations often suboptimal!

## Manual algorithm configuration



Figure: Manual tuning: steer the algorithm



## Manual algorithm configuration



Figure: Manual tuning: steer the algorithm

# WARNING: Manual tuning is time-consuming + trial & error process

# Automatic algorithm configuration [Hutter et al., 2009]



Figure: Automatic tuning: take educated guesses



#### 1. Performance Map Learning Phase (PMLP)

Supervised Machine Learning (ML) predictor [Shalev-Shwartz and Ben-David, 2014] learns coefficients  $\theta^*$  for prediction model  $\bar{p}_A(f, c, \theta)$  of  $p_A(f, c)$ .

#### 2. Configuration Space Search Problem (CSSP)

Optimization problem encoding properties of PMLP in closed form (by mathematical programming). For given f and  $\theta$  CSSP $(f, \theta)$ finds algorithmic configuration with minimum estimated performance:

$$\text{CSSP}(f,\theta) \equiv \min_{c \in \mathcal{C}_A} \bar{p}_{\mathcal{A}}(f,c,\theta).$$

You may be enticed by:

- in CSSP: ML ¬black-box ⇒ CSSP solved with known optimization techniques
- learning-based optimization: learn components of an optimization problem then find clever way to optimize over huge combinatorial sets
- learning under hard constraints: have learning methodology enforce dependency and compatibility constraints on the controls

- ... encompass but are not limited to:
  - medicine and bio-informatics: find best treatment for a specific patient
  - **optimization solvers**: find best solver parameters for specific problem instance
  - machine learning: hyperparameter tuning
  - . . .

Algorithmic ideas to develop:

- test SVR kernels and other learning methodologies (trees, ad-hoc neural networks, ...) for PMLP
- explore ways to embed downstream optimization problem into the learning phase
- find approximations of the CSSP for faster solutions

• . . .

 Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009).
ParamILS: An automatic algorithm configuration framework. J. Artif. Int. Res., 36(1):267–306.

Rice, J. R. (1976).

The algorithm selection problem. *Advances in Computers*, 15:65–118.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms.

Cambridge University Press.